国产午夜精品一区二区-国产午夜精品视频-国产午夜精品免费一二区-国产午夜精品理论片在线-国产午夜精品理论片影院-国产午夜精品理论片


首頁
產品系列
行業應用
渠道合作
新聞中心
研究院
投資者關系
技術支持
關于創澤
| En
 
  當前位置:首頁 > 新聞資訊 > 機器人知識 > 基于真實環境數據集的機器人操作仿真基準測試  
 

基于真實環境數據集的機器人操作仿真基準測試

來源:CAAI認知系統與信息處理專委會      編輯:創澤      時間:2020/6/15      主題:其他   [加盟]

基準測試和數據集對于研究和科學進步非常重要,通過競技及可量化、可重復性結果推動關鍵研究領域進步。機器人操作目前缺乏在同等規模及重要領域被廣泛接受的基準,例如計算機視覺中的同步定位和映射(SLAM)和目標檢測。曾經提出的操作基準和挑戰需要訪問昂貴的平臺和專門的環境(即FetchIt、Amazon Picking Challenge等),使用特有對象來評估系統的能力,限制了整個研究領域的發展。機器人操作方面研究在仿真環境中進行具備優勢包括:(1)有助于獲得可重復的結果,(2)允許訪問潛在的不可用平臺,(3)本質上是安全的,(4)不會磨損或損壞物理系統,并且(5)除了并行運行許多實例之外,還可以比實時運行更快。然而,物理模擬的不足也很明顯,在仿真環境中生成的控制器在轉移到現實世界時往往是不可靠的。現實差距的現象是眾所周知的,但很少有人能量化這一差距。  

 

近期IEEE ROBOTICS AND AUTOMATION LETTERS發表了“Benchmarking simulated robotic manipulation through a real worlddataset”, 提出的基準和附屬數據集旨在幫助研究人員和開發人員量化現實差距,特別是與機械臂的物理交互任務,從而推動仿真到現實(sim2real)的轉換,以及物理引擎,模擬器和它們的參數化方面的進展。通過使用仿真和量化指標,使基準測試能夠通用于許多操作領域,但又足夠具體,能夠提供系統的有關信息。他們的主要貢獻包括:(1)開發了一個將仿真與真實世界記錄進行比較的程序;(2)一個由機械手執行的地面真實標記操作任務的數據集,該操作任務使用高精度的運動捕捉系統進行記錄;(3)在再現真實方面用于描述模擬器成功量的子集(圖1)。作者們希望隨著時間的推移來擴展這個數據集,以覆蓋更多的任務,并應用于更多的機械手。


1、基準測試

操作基準由三個部分組成:運動捕捉任務的真實世界數據集;定義在選定的模擬環境中要模擬的任務;評估地面真實性和模擬解決方案之間性能的指標。

A.  任務

該基準目前由10個簡單的任務組成,這些任務被選中是因為它們提供了基本運動和接觸的良好初始起點。這些任務演示了如何使用基準并充當更高級任務的先驅。通過調整模擬器來精確地模擬簡單的任務,推斷這些相同的參數將擴展到共享底層關聯的更復雜的場景。基準將被擴展到包括更高級的任務,這些任務與實際操作場景具有更高的相關性。表1列出了任務以及簡短的描述以及它們包含的子組。

B、數據集

數據集是在CSIRO的Qualisys運動捕捉系統中收集的,將其作為實時高精度地面真實數據提交。該系統包括24個攝像頭,安裝在8×8×4米的龍門架上。校準為<1 mm的殘余值,系統記錄頻率為100 Hz。系統的延遲取決于以下幾個變量:標記數、攝像機數和計算機設置。數據從主機PC(接收延遲小于6毫秒的數據)流到運行機器人操作系統(ROS)的第三方PC。手臂配備有Robotiq FT300力扭矩傳感器,安裝在手臂手腕和夾持器之間,使用兩個如圖2所示的3D打印底座(底座的網格文件可以在基準網站上找到)。安裝支架采用剛性和輕質的ABS塑料進行3D打印,這滿足了作為系統最終環節的設計要求,包括重量小于1.2 kg的夾持器。在記錄數據集之前,Robotiq FT300用Kinova夾具進行了校準。該數據集的目的是在未來通過一系列的機器人操作器完成額外的任務。基準測試的用戶不必記錄任務,目的是用戶應用所提供的數據集對其模擬環境進行基準測試。


C、模擬器設置

要使用文中的基準測試系統對模擬器進行基準測試,必須遵循以下準則。任何未列為受控變量的參數都可以用來改進仿真。一般來說,場景、機器人和機器人的控制都設置為不可變,而大多數其他參數都是用戶可定義的。文中的基準適用于任何模擬器。制造商統一機器人描述格式(URDF)與網格文件可以一起在基準的網站上下載,作為機器人機械手的描述。如果模擬器本身不支持URDF,則機器人可以按照URDF或制造商規范導入剛體網格,在選定的仿真環境中進行組裝。


D、性能指標

沒有一個指標能夠客觀地評估模擬器在所有任務中的性能,因此提出了一系列的指標。在推導合適的性能指標時,注意到平均一個具有相同起點和終點的對象的軌跡是可能的,特別是對于遵循相同控制軌跡的對象,如機械手。然而,對于具有不同末端姿態的物體,求其軌跡的平均值不是一個有效的計算方法,因此建議分析這些物體末端姿態的分布。由于在遵循物理原理的同時,由于從一個共同的開始姿勢到結束姿勢的過程中,可行方法是有限的,通過分析可操縱物體的末端結構,我們發現這是一個有效的度量標準。此外,還使用進一步的度量來表征這些對象的運動。

   

圖3 二元正態分布概率密度函數的三維繪圖


E、報告績效

組合基準和數據集的網站旨在托管基準用戶的結果。由于包含可操作對象的任務有23個度量(不包含對象的任務有15個度量),因此有太多的度量無法公開顯示和比較,因此可能會使用錯誤。任務根據主題劃分為多個子組,并報告子組的結果。子組的報告結果顯示更具有針對性比完成所有任務和只報告單個任務更有效率。


2、模擬器性能示例及結論

文中應用了兩個符合機器人性能的模擬器V-Rep和PyBullet。它們也是機器人領域常用的模擬器。運行此基線的代碼可以在基準網站上找到。V-Rep有一系列物理引擎,可以通過抽象層應用,因此能夠對以下模擬器和物理引擎組合進行基準測試。仿真機器人操作基準通過在仿真和地面真實數據集之間繪制度量來驗證仿真環境。23個指標全面描述了現實差距造成的差異,并有助于對仿真環境的結果進行基準測試。該數據集提供了有價值的信息,包括6自由度姿態的運動捕捉、關節扭矩以及在機械手手腕處的力和力矩。同時比較了兩種常用的機器人模擬器V-Rep和PyBullet在一般參數設置下的性能,基于度量分析了模擬器在完成數據集任務時的精度,證明了所選度量的實用性。





看高清視頻,如何做到不卡頓

優酷智能檔突破“傳統自適應碼率算法”的局限,解決視頻觀看體驗中高清和流暢的矛盾

京東姚霆:推理能力,正是多模態技術未來亟需突破的瓶頸

姚霆指出,當前的多模態技術還是屬于狹隘的單任務學習,整個訓練和測試的過程都是在封閉和靜態的環境下進行,這就和真實世界中開放動態的應用場景存在一定的差異性

利用時序信息提升遮擋行人檢測準確度

Tube Feature Aggregation Network(TFAN)新方法,即利用時序信息來輔助當前幀的遮擋行人檢測,目前該方法已在 Caltech 和 NightOwls 兩個數據集取得了業界領先的準確率

基于網格圖特征的琵琶指法自動識別

根據各種指法的具體特點,對時頻網格圖、時域網格圖、頻域網格圖劃分出若干個不同的計算區域,并以每個計算區域的均值與標準差作為指法自動識別的特征使用,用于基于機器學習方法的指法自動識別

知識圖譜在個性化推薦領域的研究進展及應用

新加坡國立大學NExT中心的王翔博士分析了知識圖譜在個性化推薦領域的應用背景,并詳細介紹了課題組在個性化推薦中的相關研究技術和進展,包括基于路徑、基于表征學習、基于圖神經網絡等知識圖譜在推薦系統中的融合技術

重構ncnn,騰訊優圖開源新一代移動端推理框架TNN

新一代移動端深度學習推理框架TNN,通過底層技術優化實現在多個不同平臺的輕量部署落地,性能優異、簡單易用。騰訊方面稱,基于TNN,開發者能夠輕松將深度學習算法移植到手機端高效的執行,開發出人工智能 App,真正將 AI 帶到指尖

達摩院金榕教授113頁PPT詳解達摩院在NLP、語音和CV上的進展與應用實踐

達摩院金榕教授介紹了語音、自然語言處理、計算機視覺三大核心AI技術的關鍵進展,并就AI技術在在實際應用中的關鍵挑戰,以及達摩院應對挑戰的創新實踐進行了解讀

OpenAI發布了有史以來最強的NLP預訓練模型GPT-3

2020年5月底OpenAI發布了有史以來最強的NLP預訓練模型GPT-3,最大的GPT-3模型參數達到了1750億個參數

多尺度圖卷積神經網絡:有效統一三維形狀離散化特征表示

解決了傳統圖卷積神經網絡中圖節點學習到的特征對圖分辨率和連接關系敏感的問題,可以實現在低分辨率的三維形狀上學習特征,在高低分辨率形狀之上進行測試,并且保持不同分辨率特征的一致性

履約時間預估:如何讓外賣更快送達

外賣履約時間預估模型,預估的是從用戶下單開始到騎手將餐品送達用戶手中所花的時間

性能超越最新序列推薦模型,華為諾亞方舟提出記憶增強的圖神經網絡

記憶增強的圖神經網絡對短期的商品語境信息建模,并使用共享的記憶網絡來捕捉商品之間的長期依賴,對多個模型進行了對比,在Top-K序列推薦中效果極佳

如何創造可信的AI,這里有馬庫斯的11條建議

馬庫斯系統性地闡述了對當前AI研究界的批判,從認識科學領域中針對性地給出了11條可執行的建議
 
資料獲取
新聞資訊
== 資訊 ==
» 人形機器人未來3-5年能夠實現產業化的方
» 導診服務機器人上崗門診大廳 助力醫院智慧
» 山東省青島市政府辦公廳發布《數字青島20
» 關于印發《青海省支持大數據產業發展政策措
» 全屋無主燈智能化規范
» 微波雷達傳感技術室內照明應用規范
» 人工智能研發運營體系(ML0ps)實踐指
» 四驅四轉移動機器人運動模型及應用分析
» 國內細分賽道企業在 AIGC 各應用場景
» 國內科技大廠布局生成式 AI,未來有望借
» AIGC領域相關初創公司及業務場景梳理
» ChatGPT 以 GPT+RLHF 模
» AIGC提升文字 圖片滲透率,視頻 直播
» AI商業化空間前景廣闊應用場景豐富
» AI 內容創作成本大幅降低且耗時更短 優
 
== 機器人推薦 ==
 
迎賓講解服務機器人

服務機器人(迎賓、講解、導診...)

智能消毒機器人

智能消毒機器人

機器人底盤

機器人底盤

 

商用機器人  Disinfection Robot   展廳機器人  智能垃圾站  輪式機器人底盤  迎賓機器人  移動機器人底盤  講解機器人  紫外線消毒機器人  大屏機器人  霧化消毒機器人  服務機器人底盤  智能送餐機器人  霧化消毒機  機器人OEM代工廠  消毒機器人排名  智能配送機器人  圖書館機器人  導引機器人  移動消毒機器人  導診機器人  迎賓接待機器人  前臺機器人  導覽機器人  酒店送物機器人  云跡科技潤機器人  云跡酒店機器人  智能導診機器人 
版權所有 © 創澤智能機器人集團股份有限公司     中國運營中心:北京·清華科技園九號樓5層     中國生產中心:山東日照太原路71號
銷售1:4006-935-088    銷售2:4006-937-088   客服電話: 4008-128-728

主站蜘蛛池模板: 粉嫩在线观看| 国产精品四虎| 欧美 另类 精品一区视频| 亚洲黄色在线观看| 国产性夜夜春夜夜爽| 日日综合| 岛国大片在线播放免费| 欧美亚洲欧美| 91麻豆网址| 美女紧身裤裆看光了下面| 亚洲午夜视频在线| 国内自拍视频在线播放| 日韩在线观看网站| 成人免费看黄网址| 欧美一级做一级爱a做片性| 8050午夜二级一级全黄| 久久综合视频网站| 小叔用力插插深点| 国产精品精品| 日韩高清第一页| 不卡免费播放| 欧美婷婷| 91频视| 免费观看老外特级毛片| 一级片在线观看视频| 九九热九九热| 天天摸夜夜爽| 国产乱对白刺激视频在线观看| 日韩不卡一区| 成人美女免费网站视频| 欧美在线免费观看| 97av麻豆蜜桃一区二区| 久久夜视频| 亚洲天堂成人在线| 狠狠狠色丁香婷婷综合久久88| 四虎永久免费最新在线| 国产精品盗摄一区二区在线| 日韩精品免费视频| 成人欧美一区二区三区黑人妖 | 免费人成a大片在线观看动漫| 一区二区高清在线|